1,950 research outputs found

    Long-run commodity prices, economic growth and interest rates: 17th century to the present day

    Get PDF
    A significant proportion of the trade basket of many developing countries is comprised of primary commodities. This implies relative price movements in commodities may have important consequences for economic growth and poverty reduction. Taking a long-run perspective, we examine the historical relation between a new aggregate index of commodity prices, economic activity and interest rates. Initial empirical tests show that commodity prices present a downward trend with breaks over the entire industrial age, providing clear support for the Prebisch-Singer hypothesis. It would also appear that this trend has declined at a faster rate since the 1870s. Conversely, several GDP series such as World, Chile, China, UK and US, trend upwards with breaks. Such trending behaviour in both commodity prices and economic activity suggests a latent common factor like technological innovation. To assess the relationships between economic series, we apply a stationary VAR (Vector Autoregression) to model movements around trends. Strikingly, there is evidence that commodity prices Granger cause income and interest rates, whilst interest rates Granger cause commodity prices. From these results and the related impulse response function analysis, the historical perspective provides some useful information for contemporary policy makers. For example, loose monetary policy has tended to support higher commodity prices. More-over, commodity price movements have an asymmetric country effect on economic activity; periods of falling commodity prices will support GDP growth for com-modity importers like the US but depress growth for commodity exporters such as Chile

    Current Status of the High-Efficiency L-band Transmit/Receive Module Development for SAR Systems

    Get PDF
    Large, lightweight, high power, L-band phased-arrays are required to enable future NASA synthetic aperture radar (SAR) missions. The transmit/receive (T/R) module is a key component in SAR antennas and the T/R module efficiency has direct implications on the power dissipation and power generation requirements of the system. Significant improvements in the efficiency of the T/R module will make SAR missions more feasible and affordable. The efforts described in this paper are part of a three-year on-going task sponsored by the NASA Earth Science Technology Office (ESTO) under the Advanced Component Technology (ACT) program. We will describe the current status and recent results of a novel T/R module technology to achieve ultra-high efficiencies. The T/R module performance goal is to achieve an overall module efficiency greater than 70% with a minimum of 30-Watts output power at L-band frequencies

    "The non-ischemic repair" as a safe alternative method for repair of anterior post-infarction VSD

    Get PDF
    Patient's myocardium with post-infarction ventricular septum defect (VSD) is characterized by severe dysfunction. The "additive ischemia" caused by the operating process of cross-clamp ischemia and reperfusion injury, has a significant aggravation to the myocardium and overall negative impact to patient's outcome. We present a useful, safe and advantageous methodology in order to abolish "the toxic phase" of ischemia-reperfusion which is adopted by most as the "classic repair method" of myocardial protection. This abolition is in our opinion, particularly beneficial in order to reverse postoperatively the Low Cardiac Output Syndrome (LOS) and achieve better short and long term results. By using this method we avoid the aortic occlusion, the use of systematic hypothermia and any cardioplegic arrest. Furthermore, the total cardio-pulmonary bypass (CPB) time is significantly reduced, tissue debridement and stitching is much easier and safer. We think the method is applicable for every anterior and apical case of post-infarction septum rupture. After application of method in 3 patients with anterior post-myocardial infarction VSD, we are convinced that the patient will have a better postoperative haemodynamic condition and therefore a better outcome

    An analysis of synteny of Arachis with Lotus and Medicago sheds new light on the structure, stability and evolution of legume genomes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Most agriculturally important legumes fall within two sub-clades of the Papilionoid legumes: the Phaseoloids and Galegoids, which diverged about 50 Mya. The Phaseoloids are mostly tropical and include crops such as common bean and soybean. The Galegoids are mostly temperate and include clover, fava bean and the model legumes <it>Lotus </it>and <it>Medicago </it>(both with substantially sequenced genomes). In contrast, peanut (<it>Arachis hypogaea</it>) falls in the Dalbergioid clade which is more basal in its divergence within the Papilionoids. The aim of this work was to integrate the genetic map of <it>Arachis </it>with <it>Lotus </it>and <it>Medicago </it>and improve our understanding of the <it>Arachis </it>genome and legume genomes in general. To do this we placed on the <it>Arachis </it>map, comparative anchor markers defined using a previously described bioinformatics pipeline. Also we investigated the possible role of transposons in the patterns of synteny that were observed.</p> <p>Results</p> <p>The <it>Arachis </it>genetic map was substantially aligned with <it>Lotus </it>and <it>Medicago </it>with most synteny blocks presenting a single main affinity to each genome. This indicates that the last common whole genome duplication within the Papilionoid legumes predated the divergence of <it>Arachis </it>from the Galegoids and Phaseoloids sufficiently that the common ancestral genome was substantially diploidized. The <it>Arachis </it>and model legume genomes comparison made here, together with a previously published comparison of <it>Lotus </it>and <it>Medicago </it>allowed all possible <it>Arachis-Lotus-Medicago </it>species by species comparisons to be made and genome syntenies observed. Distinct conserved synteny blocks and non-conserved regions were present in all genome comparisons, implying that certain legume genomic regions are consistently more stable during evolution than others. We found that in <it>Medicago </it>and possibly also in <it>Lotus</it>, retrotransposons tend to be more frequent in the variable regions. Furthermore, while these variable regions generally have lower densities of single copy genes than the more conserved regions, some harbor high densities of the fast evolving disease resistance genes.</p> <p>Conclusion</p> <p>We suggest that gene space in Papilionoids may be divided into two broadly defined components: more conserved regions which tend to have low retrotransposon densities and are relatively stable during evolution; and variable regions that tend to have high retrotransposon densities, and whose frequent restructuring may fuel the evolution of some gene families.</p

    Scientific Opportunities with an X-ray Free-Electron Laser Oscillator

    Full text link
    An X-ray free-electron laser oscillator (XFELO) is a new type of hard X-ray source that would produce fully coherent pulses with meV bandwidth and stable intensity. The XFELO complements existing sources based on self-amplified spontaneous emission (SASE) from high-gain X-ray free-electron lasers (XFEL) that produce ultra-short pulses with broad-band chaotic spectra. This report is based on discussions of scientific opportunities enabled by an XFELO during a workshop held at SLAC on June 29 - July 1, 2016Comment: 21 pages, 12 figure

    A monolithic integrated photonic microwave filter

    Full text link
    [EN] Meeting the increasing demand for capacity in wireless networks requires the harnessing of higher regions in the radiofrequency spectrum, reducing cell size, as well as more compact, agile and power-efficient base stations that are capable of smoothly interfacing the radio and fibre segments. Fully functional microwave photonic chips are promising candidates in attempts to meet these goals. In recent years, many integrated microwave photonic chips have been reported in different technologies. To the best of our knowledge, none has monolithically integrated all the main active and passive optoelectronic components. Here, we report the first demonstration of a tunable microwave photonics filter that is monolithically integrated into an indium phosphide chip. The reconfigurable radiofrequency photonic filter includes all the necessary elements (for example, lasers, modulators and photodetectors), and its response can be tuned by means of control electric currents. This is an important step in demonstrating the feasibility of integrated and programmable microwave photonic processors.The authors acknowledge financial support from the Spanish Centro para el Desarrollo Tecnologico Industrial (CDTI) through the NEOTEC start-up programme, the European Commission through the 7th Research Framework Programme project, Photonic Advanced Research and Development for Integrated Generic Manufacturing (FP7-PARADIGM), the Generalitat Valenciana through the Programa para grupos de Investigacion de Excelencia (PROMETEO) project code 2013/012, the Spanish Ministerio de Economia y Comercio (MINECO) via project TEC2013-42332-P, PIF4ESP, and the Unwersitat Politecnica de Valencia (UPVOV) through projects 10-3E-492 and 08-3E-008 funded by the Fondos Europeos de Desarrollo Regional (FEDER). J.S. Fandino acknowledges financial support from Formacion de Profesorado Universitario (FPU) grant AP2010-1595.Sanchez Fandiño, JA.; Muñoz Muñoz, P.; Doménech Gómez, JD.; Capmany Francoy, J. (2017). A monolithic integrated photonic microwave filter. Nature Photonics. 11(2):124-129. https://doi.org/10.1038/NPHOTON.2016.233S124129112Novak, D. et al. Radio-over-fiber technologies for emerging wireless systems. IEEE J. Quantum Electron. 52, 1–11 (2016).Waterhouse, R. & Novak, D. Realizing 5G: microwave photonics for 5G mobile wireless systems. IEEE Microw. Mag. 16, 84–92 (2015).Won, R. Microwave photonics shines. Nat. Photon. 5, 736 (2011).Capmany, J. & Novak, D. Microwave photonics combines two worlds. Nat. Photon. 1, 319–330 (2007).Yao, J. Microwave photonics. J. Lightw. Technol. 27, 314–335 (2009).Andrews, J. G. et al. What will 5G be? IEEE J. Sel. Areas Commun. 32, 1065–1082 (2014).Gosh, A., et al. Millimetre-wave enhanced local area systems: a high-data-rate approach for future wireless networks. IEEE J. Sel. Areas Commun. 32, 1152–1163 (2014).Marpaung, D. et al. Integrated microwave photonics. Laser Photon. Rev. 7, 506–538 (2013).Iezekiel, S., Burla, M., Klamkin, J., Marpaung, D. & Capmany, J. RF engineering meets optoelectronics: progress in integrated microwave photonics. IEEE Microw. Mag. 16, 28–45 (2015).Mitchell, J. E. Integrated wireless backhaul over optical access networks. J. Lightw. Technol. 32, 3373–3382 (2014).Liu, C., Wang, J., Cheng, L., Zhu, M. & Chang, G.-K. Key microwave-photonics technologies for next-generation cloud-based radio access networks. J. Lightw. Technol. 32, 3452–3460 (2014).Norberg, E. J., Guzzon, R. S., Parker, J. S., Johansson, L. A. & Coldren, L. A. Programmable photonic microwave filters monolithically integrated in InP/InGaAsP. J. Lightw. Technol. 29, 1611–1619 (2011).Guzzon, R., Norberg, E., Parker, J., Johansson, L. & Coldren, L. Integrated InP–InGaAsP tuneable coupled ring optical bandpass filters with zero insertion loss. Opt. Express 19, 7816–7826 (2011).Fandiño, J. S. & Muñoz, P. Photonics-based microwave frequency measurement using a double-sideband suppressed-carrier modulation and an InP integrated ring-assisted Mach–Zehnder interferometer filter. Opt. Lett. 38, 4316–4319 (2013).Burla, M. et al. On-chip ultra-wideband microwave photonic phase shifter and true time delay line based on a single phase-shifted waveguide Bragg grating. In IEEE International Topical Meeting on Microwave Photonics 92–95 (IEEE, 2013).Shi, W., Veerasubramanian, V., Patel, D. & Plant, D. Tuneable nanophotonic delay lines using linearly chirped contradirectioinal couplers with uniform Bragg gratings. Opt. Lett. 39, 701–703 (2014).Guan, B. et al. CMOS compatible reconfigurable silicon photonic lattice filters using cascaded unit cells for RF-photonic processing. IEEE J. Sel. Top. Quantum Electron. 20, 359–368 (2014).Khan, M. H. et al. Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper. Nat. Photon. 4, 117–122 (2010).Pagani, M. et al. Instantaneous frequency measurement system using four-wave mixing in an ultra-compact long silicon waveguide. In Proc. 41st European Conf. on Optical Communication (ECOC) 1–3 (IEEE, 2015).Khilo, A. et al. Photonic ADC: overcoming the bottleneck of electronic jitter. Opt. Express 20, 4454–4469 (2012).Wang, J. et al. Reconfigurable radio-frequency arbitrary waveforms synthesized in a silicon photonic chip. Nat. Commun. 6, 5957 (2015).Marpaung, D. et al. Si3N4 ring resonator-based microwave photonic notch filter with an ultrahigh peak rejection. Opt. Express 21, 23286–23294 (2013).Zhuang, L. et al. Ring resonator-based on-chip modulation transformer for high-performance phase-modulated microwave photonic links. Opt. Express 21, 25999–26013 (2013).Marpaung, D., Chevalier, L., Burla, M. & Roeloffzen, C. Impulse radio ultrawideband pulse shaper based on a programmable photonic chip frequency discriminator. Opt. Express 19, 24838–24848 (2011).Marpaung, D. On-chip photonic-assisted instantaneous microwave frequency measurement system. IEEE Photon. Technol. Lett. 25, 837–840 (2013).Burla, M. et al. On-chip CMOS compatible reconfigurable optical delay line with separate carrier tuning for microwave photonic signal processing. Opt. Express 19, 21475–21484 (2011).Tan, K. et al. Photonic-chip-based all-optical ultra-wideband pulse generation via XPM and birefringence in a chalcogenide waveguide. Opt. Express 21, 2003–2011 (2013).Pagani, M. et al. Tuneable wideband microwave photonic phase shifter using on-chip stimulated Brillouin scattering. Opt. Express 22, 28810–28818 (2014).Pérez, D., Gasulla, I. & Capmany, J. Software-defined reconfigurable microwave photonics processor. Opt. Express 23, 14640–14654 (2015).Capmany, J., Gasulla, I. & Pérez, D. Microwave photonics: the programmable processor. Nat. Photon. 10, 6–8 (2016).Zhuang, L., Roeloffzen, C. G. H., Hoekman, M., Boller, K.-J. & Lowery, A. J. Programmable photonic signal processor chip for radiofrequency applications. Optica 2, 854–859 (2015).Roeloffzen, C. G. et al. Silicon nitride microwave photonic circuits. Opt. Express 21, 22937–22961 (2013).Liu, W. et al. A fully reconfigurable photonic integrated signal processor. Nat. Photon. 10, 190–195 (2016).Madsen, C. K. & Zhao, J. H. Optical Filter Design and Analysis: A Signal Processing Approach (Wiley, 1999).Román, J., Frankel, M. Y. & Esman, R. D. Spectral characterization of fiber gratings with high resolution. Opt. Lett. 23, 939–941 (1998).Hernández, R., Loayssa, A. & Benito, D. Optical vector network analysis based on single-sideband modulation. Opt. Eng. 43, 2418–2421 (2004).Jinguji, K. & Oguma, M. Optical half-band filters. J. Lightw. Technol. 18, 252–259 (2000).Madsen, C. K. Efficient architectures for exactly realizing optical filters with optimum bandpass designs. IEEE Photon. Technol. Lett. 10, 1136–1138 (1998).Madsen, C. K. General IIR optical filter design for WDM applications using all-pass filters. J. Lightw. Technol. 18, 860–868 (2000).Smit, M. K. et al. An introduction to InP-based generic integration technology. Semicond. Sci. Technol. 29, 083001 (2014).Besse, P. A., Gini, E., Bachmann, M. & Melchior, H. New 2×2 and 1×3 multimode interference couplers with free selection of power splitting ratios. J. Lightw. Technol. 14, 2286–2293 (1996).Pérez, D. et al. Figures of merit for self-beating filtered microwave photonic systems. Opt. Express 24, 10087–10102 (2016).Zhuang, L. et al. Novel low-loss waveguide delay lines using Vernier ring resonators for on-chip multi-λ microwave photonic signal processors. Laser Photon. Rev. 7, 994–1002 (2013)

    The host metabolite D-serine contributes to bacterial niche specificity through gene selection

    Get PDF
    Escherichia coli comprise a diverse array of both commensals and niche-specific pathotypes. The ability to cause disease results from both carriage of specific virulence factors and regulatory control of these via environmental stimuli. Moreover, host metabolites further refine the response of bacteria to their environment and can dramatically affect the outcome of the host–pathogen interaction. Here, we demonstrate that the host metabolite, D-serine, selectively affects gene expression in E. coli O157:H7. Transcriptomic profiling showed exposure to D-serine results in activation of the SOS response and suppresses expression of the Type 3 Secretion System (T3SS) used to attach to host cells. We also show that concurrent carriage of both the D-serine tolerance locus (dsdCXA) and the locus of enterocyte effacement pathogenicity island encoding a T3SS is extremely rare, a genotype that we attribute to an ‘evolutionary incompatibility’ between the two loci. This study demonstrates the importance of co-operation between both core and pathogenic genetic elements in defining niche specificity
    corecore